

Velocity DIA: Enhanced data acquisition and data evaluation strategies for Orbitrap research

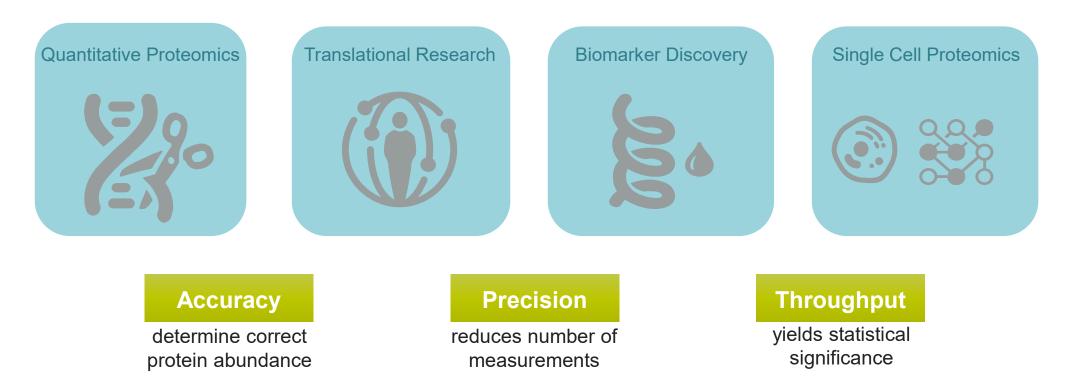
and

Introducing WWA and Chimerys

Dr Joanna Kirkpatrick Proteomics TSS

X-Omics Festival 17/4/2023

The world leader in serving science

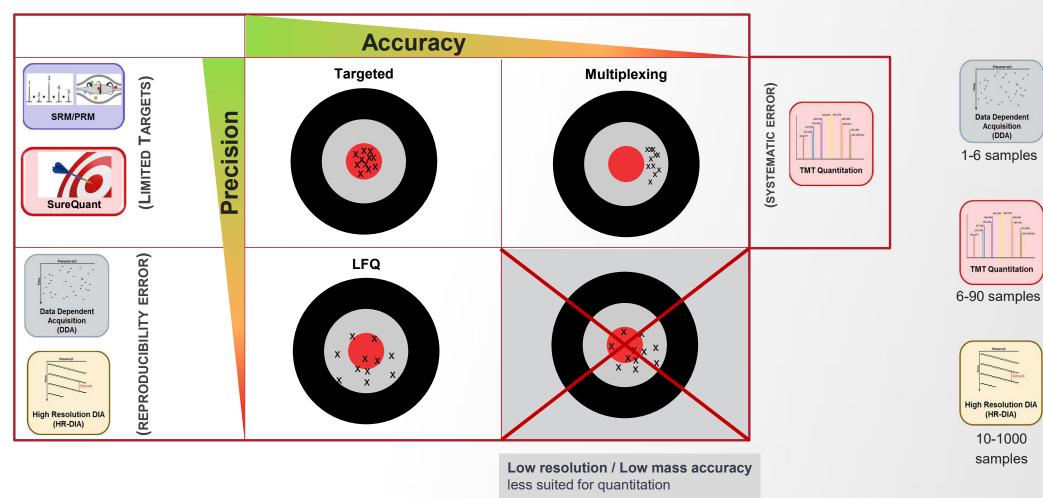

1 Proprietary & Confidential | authoremail@thermofisher.com | 12-January-2022

Why quantify proteins?

Thermo Fisher

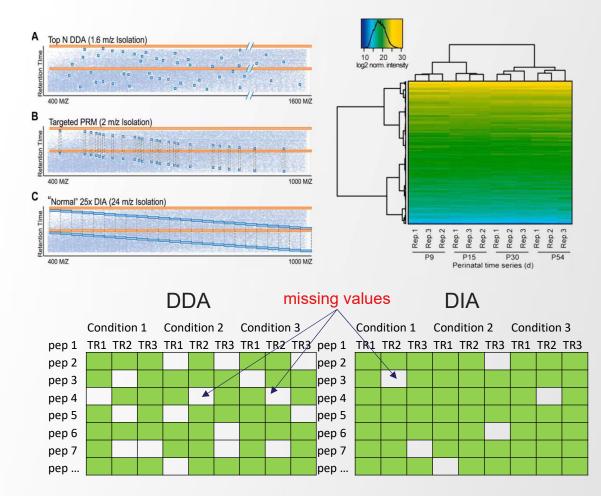
More than just IDs - adding quantitative information makes the difference

Confident characterization of differences in biological systems needs exact measurements for hypothesis testing of predictive theoretical models



Choices for proteomic quantitation

Throughput


Each method is a fit-for-purpose assay

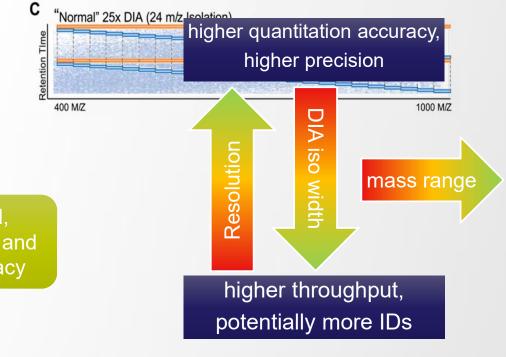
High throughput data-independent acquisition platform

Why use DIA for large scale proteomics?

- Large sample cohorts need to be analyzed in clinical studies
- Confident and reproducible identification and quantitation is needed
- Missing values need to be as minimal as possible
- High throughput is needed while maintaining accurate quantitation of as many proteins as possible

Thermo Fisher

Figure adapted from Bruderer et al., Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results, MCP 2017, doi 10.1074/mcp.RA117.000314


Principles of data-independent acquisition

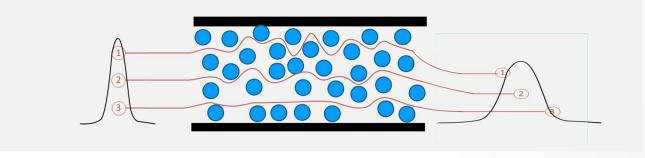
A fine balance between protein IDs, quantitation accuracy, and throughput

- In DIA mode, all ions isolated within a certain mass range are fragmented under equal conditions
- Important parameters include:
 - Isolation width
 - Mass range of isolation
 - Resolution in DIA scans
 - Window overlap
 - Collision energy

Determine speed, proteome coverage and quantitation accuracy

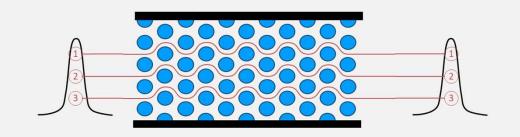
High-throughput DIA workflow setup

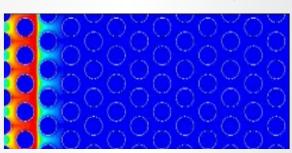
Thermo Fisher SCIENTIFIC


Workflow for high-throughput label-free quantitation and proteome

Characteristic of the µPAC HPLC columns

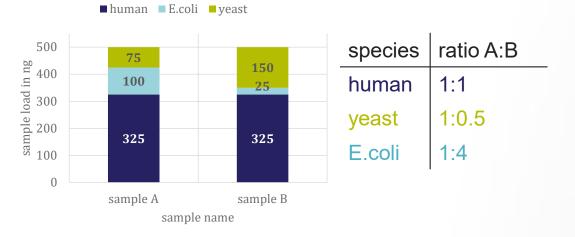
Thermo Fisher SCIENTIFIC


Perfect order in chromatography with micropillar array-based technology



Disorder – Packed bed

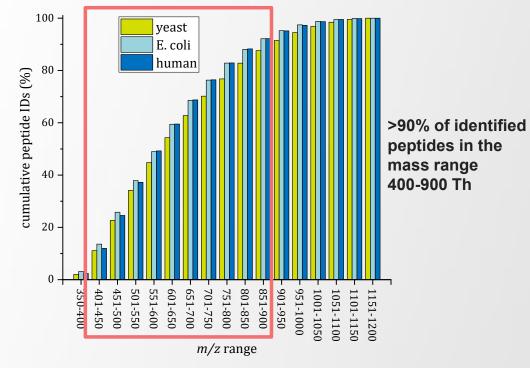
Order – Pillar Array



Reduced eddy-dispersion results in sharper peaks – higher intensity

Experimental design

Thermo Fisher SCIENTIFIC

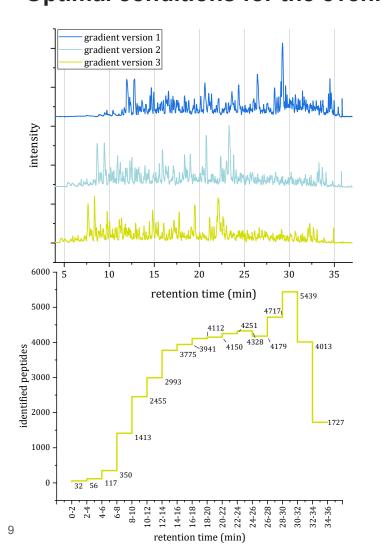


Sample mixtures with different ratios

Three-Proteome Mix

- High human background levels
- 30 min gradients optimized DIA
- Spectronaut 16 directDIA[™] processing (without library)

How large does the mass range have to be?



- Mass range and window size determine the duty cycle time
- 120 min DDA runs for all three species
 - mass range 350 1,200 Th

8

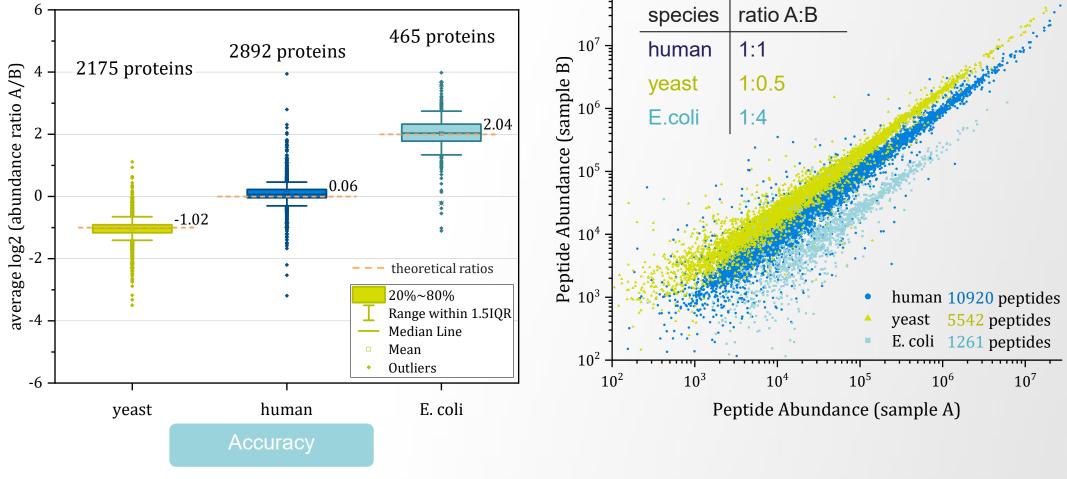
Optimization of LC gradient and flow rate

Optimal conditions for the evenly distributed elution and IDs should be determined

LC method

- Direct injection setup
- Flow a bit higher than usual
- Gradient optimized for µPAC Neo column

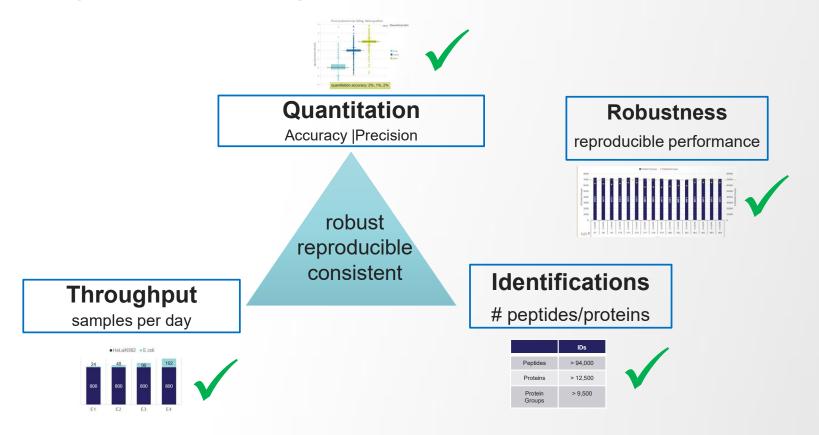
MS DIA method:


- MS1 resolution: 60k
- MS1 AGC target: 300%
- MS2 (DIA) resolution: 15k
- MS1 mass range (*m/z*): 400-900
- Isolation width: 12 Th
- DIA scan range (*m/z*): 145 1,450
- MS2 AGC target: 800%
- HCD NCE: 30

No	Time	Duration [min]	Flow [µl/min]	%B	Volume [µl]	No. of Column Volumes
1	0.000	Run				
2	0.000	0.000	0.350	4.0	0.00	0.00
3	22.500	22.500	0.350	30.0	7.88	5.32
4	30.000	7.500	0.350	45.0	2.63	1.77
5	30.000	Column Wash				
6	30.100	0.100	0.350	97.5	0.04	0.02
7	33.000	2.900	0.350	97.5	1.02	0.69
8	33.100	0.100	0.350	4.0	0.04	0.02
9	39.000	5.900	0.350	4.0	2.07	1.40
10	39.000	Stop Run				
11	39.000	Column Equilibration				

ThermoFisher

Quantitation accuracy in three-proteome mixtures


LFQ benchmark: a measure for quantitation accuracy with Spectronaut 17

Thermo Fisher

Optimized HR-DIA on Orbitrap Exploris 240/480 MS is the right combination for your lab

Vanquish Neo UHPLC | µPAC Neo column | Orbitrap Exploris 240/480 MS

Thermo Fisher

Summary of Velocity DIA workflow

Orbitrap Exploris 240/480 provides excellent quantitation and robust proteome coverage

- The combination of Vanquish Neo, µPAC Neo column and Orbitrap Exploris 240/480 MS represents an ideal workflow for high-throughput label-free proteome ID and quan by DIA
- A short (30 min) gradient was developed, providing high throughput
- directDIA provides deep proteome coverage with > 99% data completeness
- DIA data is <u>high quality</u>, leading to excellent quantitation results as demonstrated with mixed proteome experiments, where median CVs of quantified peptides below 7 % and high ratio accuracy were obtained

Introducing CHIMERYS and Wide-Window Acquisition (WWA)

- Limited input sample amounts results in low proteome coverage. Even ٠. employing DIA, with low signal, many of the MS1 windows selected may contain few to no precursors of sufficient intensity to generate good quality MS2.
 - Solution: Increase injection times to allow more ions to accumulate for MS2 .
 - Problem: lower duty cycle
- ٠. Increase resolution in Orbitrap at no cost to cycle time = overkill for DDA on single precursor
 - Solution: Increase precursor isolation width in DDA mode .
 - Problem: Generates Chimeric MS2 spectra (but with high resolution) •
 - Benefit: Only regions of MS1 which are populated get selected for MS2 •

RESULT:

- Generation of high-resolution MS2 spectra containing complex ion populations ٠. that can be resolved, making the most of the long injection times
 - Problem: How to search this data?
 - Solution: CHIMERYS software developed by MSAID (Munich, Germany) and • included with Proteome Discoverer 3.0 is employed, which can resolve >10 precursors per MS2 spectrum.

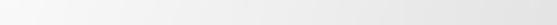
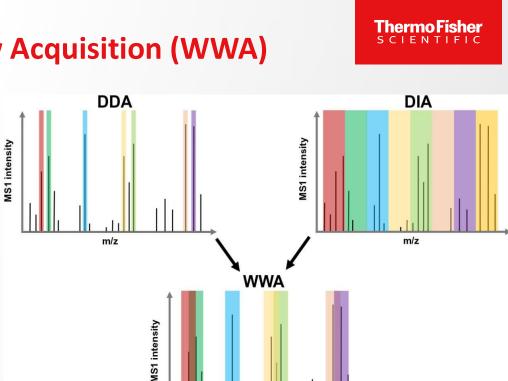
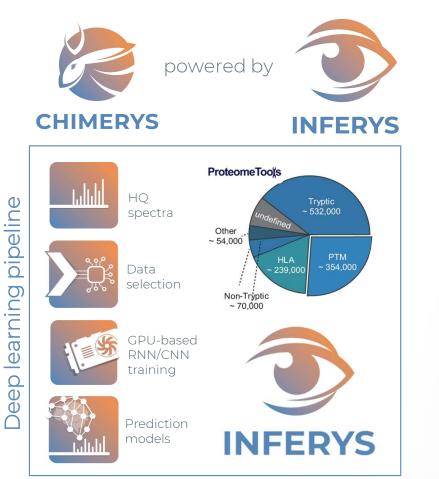



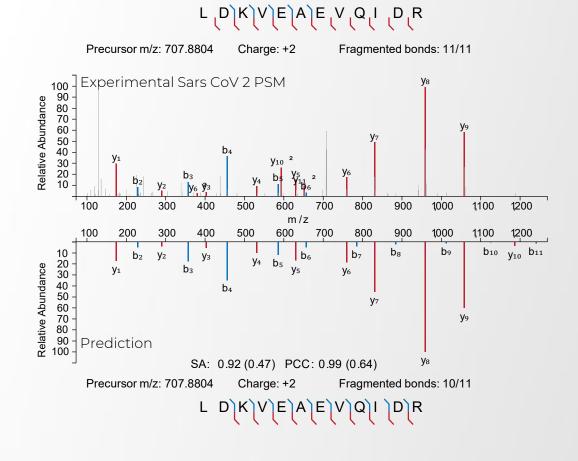
Figure adapted from Truong et al. BioRxiv (2022) https://doi.org/10.1101/2022.10.18.512791

neighbouring precursors (as with DIA).

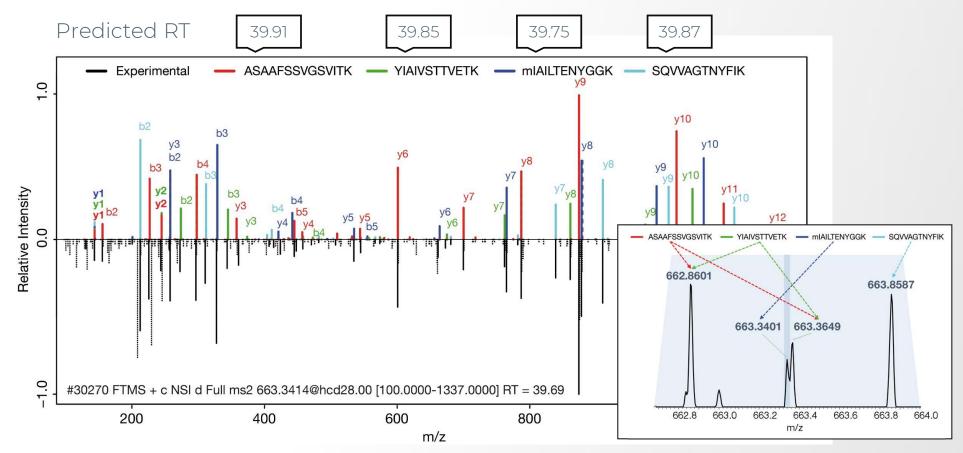

WWA serves as a hybrid between DDA and DIA with a specific precursor being isolated for fragmentation (as with DDA), while the wide isolation windows allow for co-fragmentation and analysis of untargeted

m/z

CHIMERYS: rethinking the identification of MS2 spectra


• Integrated into Proteome Discoverer 3.0 software.

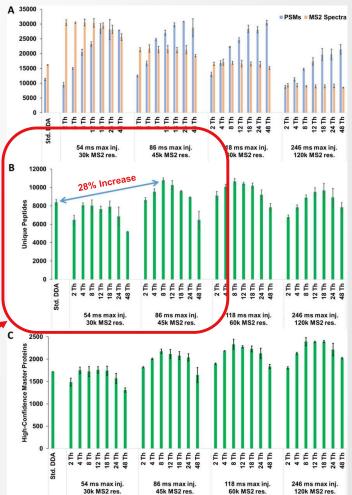
Advances in deep learning combined with high quality training data = INFERYS deep learning framework.


Accurate prediction of spectra with the help of deep learning

Thermo Fisher S C I E N T I F I C

Chimeric spectra in proteomic data: a novel, Al-based approach

Intensity-based deconvolution of chimeric spectra based on accurate predictions.


CHIMERYS ' sensitivity enables the identification of low-abundant peptides

• Human Yeast Shared CHIMERYS 3000 -- 0000 - 0001 INFERYS Rescoring Log2 ratio Precursor Detector Sequest 0 HT CHIMERYS INFERYS Sequest HT Sequest HT Rescoring PrecDet 8 4 6 Log10 peptide abundance

1h DDA HeLa/Yeast 250ng/125ng lysate analyzed in three replicates on an Orbitrap Exploris 480 mass spectrometer

Parameter optimization experiments for 40-min gradients using 0.2 ng aliquots of HeLa digest.

- A) Number of collected MS2 spectra and PSMs as a function of maximum injection time/resolution and MS2 isolation window.
- (B) Number of unique peptides identified as a function of MS acquisition settings.
- (C) Number of high-confidence master proteins (1% FDR). All identifications are based solely on MS2 identification (no MBR).

Thermo Fisher

BioRxiv (2022) https://doi.org/10.1101/2022.10.18.512791

Acknowledgements

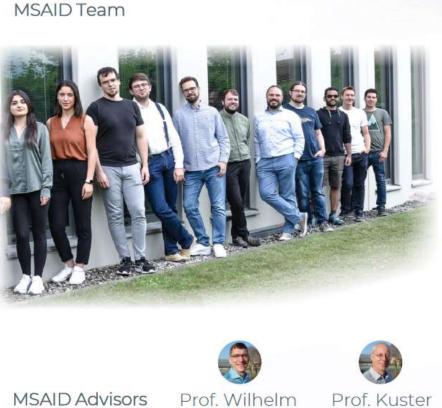
Thermo Fisher Scientific

- Frank Berg
- Kai Fritzemeier
- Waqas Nasir
- Pedro Navarro
- Jordi Bertran Vicente
- Katja Tham
- Tamara Vrublevskaya
- Shijun Li
- Terry Zhang
- **Bernard Delanghe**
- **Christoph Henrich**
- Alexander Harder
- **Tabiwang Arrey**

17

- Daniel Hermanson
- Yang Liu
- Amirmansoor Hakimi
- Yu Zhou
- Mick Greer
- Aaron Robitaille
- **Daniel Lopez-Ferrer**
- **David Bergen**
- **Romain Huguet**
- Vlad Zabrouskov
- Andreas Huhmer
- Mark Sanders
- Sergei Snovida

Thermo Fisher


SCIENTIFIC

CHIMERYS, INFERYS and MSAID and are trademarks of MSAID GmbH. SEQUEST is a trademark of the University of Washington. Powered by AWS is a trademark of Amazon, Inc. TMT and TMTpro are trademarks of Proteome Sciences plc. Byonic is a trademark of Protein Metrics. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries.

IMP Vienna: Karl Mechtler

Brigham Young University: Ryan Kelly

Thank you

For Research Use Only. Not for use in diagnostic procedures.

Thermo Fisher S C I E N T I F I C

© 2022 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.